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Under certain assumptions on the nature of the viscous gaseous shell, 

we consider the stability of the vertical rotation of a spherical gyro- 

scope. By the Liapunov-Chetaev method we obtain sufficient conditions 

for asymptotic stability. The cases of astatic and heavy gyroscopes, and 

also the case of rotation with variable angular velocity, are treated 

in particular. 

The principal scheme for the motion of a spherical gyroscope was 

given in LlI. A steel sphere 1 (Figure) is placed inside a closed 

spherical bowl 2 rotating with constant angular velocity around a sta- 

tionary vertical axis 0~1. Gas supplied through special holes in the 
wall of the bowl forms a shell completely enveloping the sphere and 

isolating it from the wall of the bowl. It is assumed that at a certain 

instant the gaseous shell becomes a homogeneous shell with constant 

thickness (equal to the difference between the radii of the bowl and 

the sphere) and remains thus for all subsequent time of the motion. Thus, 

the geometric center of the sphere coincides, by hypotheses, with the 

center of the bowl and, consequently, is a stationary point. Since the 

gas has a specific viscosity, the bowl in spinning carries along with it 

the gaseous shell which in its turn makes the sphere rotate. The sphere 

has inside it a cylindrical groove 3 for creating a definite dynamic 

axis of symmetry 0~ which at the initial instant coincides with the 

vertical 02,. The ellipsoid of inertia of the sphere with respect to 
the point 0 will be the ellipsoid of rotation. 

1. The balanced gyroscope. The problem consists of investigat- 

ing the stability of the established motion of the sphere as a rigid 
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body in which the center of gravity coincides with the point of sus- 

,pension 0 and which is acted upon by a rotating moment M originating in 

the viscous gaseous shell and proportional 

to the difference between the angular velo- 

cities of the sphere and the bowl. The 

moment M is taken in the form 

M = -K (!4 - w), K =8g2 (1.1) 

where Q is the instantaneous angular velo- 

city of the sphere, o is the constant angu- 

lar velocity of the bowl, R is the radius 

of the sphere, d is the thickness of the 

gaseous shell and v is the coefficient of 

viscosity of the gas. 

7he results of solving certain analogous problems in hydroaero- 

mechanics [21 prove that our choice of such a numerical value for co- 

efficient K is valid. 

Let us note that here the motion of the gas is not considered and 

that the gaseous shell is mentioned only in connection with the creation 

of the rotating moment M with respect to point 0. The action of moment 
M' 1s analogous to the action of an induction motor, maintaining a con- 

stant angular velocity in balanced motion. Let us write the equations 

of motion of the sphere in the form of the dynamic equations of Euler 

and the kinematic equations of Poisson 

A $- + (C - A) qr = K (coy - p), -$ + qf- r-7’ I= 0 

A 2 + (A - C) pr= K (07’ - q), g _t ry - /7,-f =- f) (1.2) 

c dr - = K (coy” - r), 
rlt 

Here A is the equatorial moment of inertia of the sphere, C is the 

axial moment of inertia of the sphere, p, 7 and r are the projections 

of the instantaneous angular velocity Q of the sphere onto the principal 

axes of inertia Oxyz, y, y’ and y ‘* are the direction cosines of the 

vertical Oz, with respect to the axes Ox, Cb, and Oz, respectively. The 

stationary state under investigation will be the particular solution of 
system (1.2) 

p==q=o, P = w = COIISL, 7 = y’ zz 0, 7” =z 1 (1.X) 

which corresponds to a rotation of the sphere and the bowl as a wliole 
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around the vertical axis 0~~. The right-hand sides of equations (1.2)) 
depending on p, q, r, y, y’ and y”, show that the mechanical system 

whose motion they describe is essentially nonconservative. The system 
of equations (1.2) allows of only one known integral 

r2 + 7’2 + TV2 = const (1.4) 

Let us determine the stability of motion (1.3) in the sense of 
Liapunov with respect to the variables p, q, F, y, y’ and y”. 

The problem of stability of vertical rotation (1.3) with respect to 
p, q, F, y, y’ and y” for a heavy rigid body with a fixed oint in the 
Lagrange case, was solved, as is well known, by Chetaev [3 P by the method 
of constructing Liapunov functions in the form of a linear combination 

of the integrals of the equations of perturbed motion. In the given case 

the number of integrals is not sufficient for the construction of a 

linear combination; however, we can try to construct a sign-definite 

combination from specially selected functions such that the conditions 

of Liapunov’s stability theorem are satisfied. 

Let us introduce into consideration the kinetic energy of the sphere, 

the projection of the angular momentum G of the sphere onto axis Ozl, 

and the function 0 

T = +(Ap2 + Aq2 + CF), Gz, = Apy + A qy’ + Cry” 

cll = 72 + 7’2 + 7s2 (1.5) 

By denoting the perturbed motion corresponding to (1.3) by 

P = El 9 = rl, r=a+L 7 = a, 7’ = P, f’ = 1 + 6 (1.6) 

we can write 

F, = A (E” + q2) + CC” + 2Co5 
F, = A (b + qS) + CC6 + C (06 + 5) 
F, = a2 + p2 i a2 + 26 

(1.7) 

Let us make a linear combination of functions (1.7) in the form 

2V = F, - 20F, + Co2F, 

It is not difficult to see that 2V will be a quadratic form 

2V = A (E” f q2) - 2oA (&I + q6) + Co2 (a” + p”) + C (< - oQ2 (1.8) 

The derivative of function I’ taken relative to the equations of per- 
turbed motion corresponding to motion (1.3) 
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(l-9) 

will be sign-constant of a sign opposite to that of V. The function V, 
not being sign-definite in all of the variables <, q, <, a, p and 6, 
will be sign-definite in the variables <, q, a, p and 6 - o< when the 

condition C > A is satisfied, which indicates that in this case the axis 

Oz will be the minor axis of the ellipsoid of inertia of the sphere 

with respect to the point 0. Thus, on the basis of the theorem on sta- 

bility with respect to a portion of the variables [41, motion (1.3) is 

stable with respect to p, q, y, y’ and r - my”. lhe variables y, y’ and 

y” are connected during the motion by relation (1.4), and therefore, 

from the stability of solution (1.3) with respect to y and y’ there 

follows stability also with respect to y”, and from stability with 

respect to y” and r - my” follows stability with respect to F. &n- 

sequently, under the condition C > A, motion (1.3) will be stable with 

respect to all the variables p, q, r, y, y’ and y”. 

The derivative 1’ is not a sign-definite function, therefore, in 

general, it is not possible to infer the asymptotic stability of state 

(1.3). However, in certain cases the sign-constancy of the derivative 

is sufficient for the unperturbed motion under study to be asymptoti- 

cally stable. Such a sufficient criterion for asymptotic stability is 

given by the theorem stated in [5, . 1 On t,he basis of this theorem t.hr 

asymptotic stability of motion (1.3) will be demonstrated if we <..n 

establish that the region I’= 0 does not wholly contain the solutions 

of the equations of perturbed motion corresponding to (1.3)) except the 

unperturbed motion (1.3’) itself. I.et us clarify in detail the nature of 

the region c: = 0. If in equality (1.9) we pass from perturbations to 

values of the original variables of the perturbed motion in accordance 

with (1.6), we obtain 

V’ = --K[ (p-(0~)~ t_ (q--oy’)2 + (r-oy”)2l = ---K/Q -aI2 (1.10) 

Hence it is seen that the derivative v’ is proportional to the square of 

the modulus of the vector difference between the angular velocities of 

the sphere in perturbed and unperturbed motions, and consequently, 

equals zero when Q = o. 

System (1.2) shows that the sphere cannot accomplish established 

motions - rotations around the vertical with constant angular velpcity 

Y - except motion (1.3). Hence, the question whether the region V = 0 

does or does not contain the entire integral curves of the equations of 

perturbed motion corresponding to (1.3), reduces to the question of 

whether the sphere for specified perturbations can or cannot accomplish 
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a continuous sequence of instantaneous rotations with some angular velo- 

city 0. In other words, can or cannot the rigid body move such that the 

fixed axoid degenerates to some fixed straight line at the same time 

that the moving axoid remains a nondegenerate cone? The kinematics of 

rigid bodies gives a negative answer to this question [61, which allows 

us to infer that under the condition C > A motion (1.3) will be asymp- 

totically stable independently of the magnitude of K. Consequently, for 

achieving asymptotic stability of vertical rotation (1.3) of the sphere, 

it is sufficient that the axis of rotation be the minor axis of the 

ellipsoid of inertia of the sphere with respect to the point of suspen- 

sion 0. An analogous result was obtained in [71 by investigating the 

linear problem. 

Note. The results of Section 1 can be extended if we waive the re- 

quirement of symmetry of the rigid body. Let A, B and C be the moments 

of inertia of the body with respect to its principal axes Oxyz. The 

other assumptions of Section 1 remain in force. It is not difficult to 

show that the function V 

2v = At2 + BqZ - 20 (AEa + BqP) + Cw2(a2 + Pz) + C(c - 06)~ (1.11) 

Positive definite in the variables <, q, a, p and 5 - 06 when the in- 
equal it ies 

C> A, C>B (1.12) 

are satisfied, has the derivative (1.9) relative to the equations of 

perturbed motion corresponding to state (1.3). Hence, the unperturbed 

motion (1.3) will be asymptotically stable under conditions (1.12). 

2. The heavy gyroscope. Let us proceed to the question of the 

stability of the sphere under the action of moment (l.l), in which the 

center of gravity does not coincide with the point of suspension 0. Let 

us assume that the center of gravity of the sphere is located on its 

dynamic axis of synnnetry Oz at a distance z,, from point 0. 

The equations of motion of the sphere 

A $ + (C - A) qr = mgz,f + K (coy - p), P-1) 

Ag+(A - C) pr = - mgq,r + K (07’ - q), 
c g = K (of - r) 

when o = const, admit of a stationary solution (1.3). By confining our- 
selves to the previous not’ations, we investigate the stability of state 

(1.3) with respect to p, q, r, y, y ’ and y”. Let us introduce into con- 

sideration the functions 
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Qr = A (5” + q2) + Cl;” + SCOT, + 2mgz,6, (2.2) 

% = A (Eo + qB) + C66 + C (06 + 6), @a = a2 + p2 t- h2 _t 26 

Functions az and o3 coincide with the corresponding functions F, and 

F, of Section 1. It is easy to see that the derivative of the functions 

v, 

2V, = a1 - 2&, + (Co2 - mgz,) CD3 

taken relative to the equations of perturbed motion for (1.3), has the 

form (1.9). The function 2V, will be a quadratic form 

2vi = A 6” + q2) + Cc2 - 2w (A& + A$ + ~56) + 
+(Co2 - mgz,) (a2 + fi2 + d2) 

(2.3) 

resulting from, a more general form constructed by Chetaev [31 when 

A = - o and P = 0 (in the notations of [31). 

‘Ihe conditions of sign-definiteness of function (2.3) 

(A - C) to2 + mgz, < 0, 20 < 0 (2.4) 

by virtue of what was stated above, will be the conditions for the 

asymptotic stability of motion (1.3). As before, the coefficient h’ does 

not enter directly into the conditions for asymptotic stability if we 

determine the damping rate of the perturbed motions of the gyroscope 

axis. Inequalities ( 2.4) may hold for any relation between A and C. In 

case C > A inequalities (2.4) are equivalent to 

to < 0 

but in case C < A they reduce to the condition 

(2.5) 

(A - C) 69 + mgz, < 0 (2.6) 

3. Ihe case u = o( t ). We studied above the stability of the 

established motion of a sphere, rotating around the vertical with a 

velocity equal to the constant velocity o of the bowl. As shown by 

system (1.2)) in the case o = o(t), the nonstationary motion of the 

sphere 

p=q=o, r = 0 (t), r = q-’ = 0, y” = 1 (3.1) 

does not occur. Motion (3. l), nevertheless, is possible in the presence 
of special corrective devices which create an auxiliary moment Mz k( t) 
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around axis 04. In every real gyroscopic system there are usually intro- 
duced corrective devices to ensure the realization of some designed 
motion; this justifies to a known degree the assumptions of the stated 
problem. 

If Mzk(t) satisfy the condition 

M*k (t) = Co.(t) (3.2) 

then the system of equations 

A g + (C - A) Q’ = K (W’ - p), 
(3.3) 

A g + (A - C) pF = K (of - q), 

c dr - = R (a$ - r) + M*k (t) 
dt 

admit of the particular solution (3.1). Retaining the adopted notations, 
we write the equations of perturbed motion corresponding to (3.1) 

df Az+(C-A)q(~+f)=K( oa - 8, $ =fw+~)-q(l+4 

A~+(A--C)((o+t)=K(oB-~), z = E(1+6)-- (a+() 

c $ = K (08 - Q, d6 
x =w - 68 (3.4) 

As the Liapunov function let us consider the combination of functions 

2V = Fl - 20 (t) F, + Cd (t) F, + p (t) Fda 

where F,, F, and F, are defined by (1.7) and F, = 5. ‘be functions o(t), 
p(t) are assumed to be bounded, continuous, twice-differentiable on the 
infinite time interval t > ta; moreover 

0-l (t) > a* > 0, o (t) # 0 when t>to (3.5) 

‘lbe function V which has been considered will be a quadratic form 
with variable coefficients 

3’ (t, E, 7, 5, a, B, 8) = A (E” + q2) + V + p) P - 
- 20 (A@ + AT@ + C:8) + Co2 (a2 + fJ2 + d2) (3.6) 

‘Ihe derivative of (3.6) taken relative to equations (3.4) will also 
be a quadratic form 

V’ = - K IE” + q2 + G2 - 20 (Ea + $J + f6) + a2 (a2 + B” + WI - 

-w~(A~u+A$+C~~)+C~~‘(U~+~~+~~)+&-~(O~-~)+ 

++pX2 = .- KY (t, 5, q, b, a, B, 6) (3.7) 
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On the basis of Liapunov's theorem on asymptotic stability, the un- 

perturbed motion (3.1) turns out to be asymptotically stable if the 

function (3.6) is positive-definite and function (3.7) negative-definite 

in the sense of Liapunov (the requirement of the presence of an in- 

finitely small upper bound in form I’ is satisfied under the given assump- 

tions on the nature of functions o(t) and u(t)). Thus, motion (3.1) is 

asymptotically stable if Sylvester's conditions are satisfied for the 

quadratic forms 

(Al, A,, A, and A, are positive numbers as small as desired). Each of 

these forms can be represented as a sum of three forms in the variables 

(5, a), (n, 13) and (5, 6). The S 1 y vester conditions for these two-vari- 

able forms are 

In order to evaluate the basic results, let us analyze these inequal- 

ities when A, = h, = h, = A, = 0. Tn this case inequalities (3.9) give 

c I> ‘4, p I-- 0 (i1.11) 

Inequalities (3.10) reduce to 
(3.12) 

‘M(A -c)ow'-11120'2)o, P'(w2- ,,;$‘j 

The first relation in (3.12) gives 

(3. 13) 

Let us now pass to the selection of function u(t) constrained by in- 

equalities (3.11) and (3.12). ""Len 
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the second relation in (3.12) is satisfied. 

Taking (3.11) into account, we get the following bounds on o: 

$<O? 
By combining (3.13) and (3.15) we 

ditions (3.9) and (3.10) reduce when 

( ) $ ‘>o (3.15) 

obtain inequalities to which con- 

A, = . . . A, = 0 

C>A, O>f>-4Kq, (;)‘>o (3.16) 

If the condition A, = . . . = h, = 0 is eliminated from the hypothesis, 

then, as is not difficult to verify, inequalities (3.9) and (3.10) give 

the following sufficient conditions for the asymptotic stability of 

state (3.1): 

C>A + El, - EQ>$>-4Kc++e,<0, (f)‘>o (3.17) 

where Em, E, and .sJ are strictly positive numbers as small as desired. 

Inequalitiei (3.17) define a certain class of asymptotically stable 

motions (3.1). Conditions (3.17) were obtained from a consideration of a 

special kind of function (3.6) when the coefficients p(t) were defined 

in accordance with (3.14). However, generally speaking, we can find 

other functions p satisfying differential inequalities (3.12) which can 

This aim can 

Liapunov function 

widen the class of asymptotically stable motions (3.1). 

also be accomplished by considering along with (3.6) a 

of a more general form 

2V* = F, + 2hF, - CohF, + pFd2 - 2C (o $ - A) F, 

where A = h(t) is some function satisfying conditions analogous to the 

corresponding conditions for n(t). 

Let us examine under what conditions an asymptotically stable motion 

(3.1) does occur in the case of heavy gyroscopes. ‘Ibis problem is solved 

with the aid of the quadratic form 

2V, = @, - 200~ + (Gz - mgz,) (& + p@)4” (3.18) 

where 0,, o2 and o3 are defined in accordance with (2.2) and 0, coin- 

cides with F,. As is not difficult to see, the derivative of (3.18) 

relative to the equations of perturbed motion coincides with (3.7). 

Along with (3.6) in the given case we obtain 
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